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Abstract

A tree-like fin is investigated and optimized by the constructal optimization method. The tree shape is not mimicked. Rather, the
fin—which was optimized in a previous paper—is enhanced geometrically. This fin is allowed to grow new branches to allow mo
fin-material to get to the surface area and transfer heat directly to the reservoir. For that, the new fin is adding more branches in e
step of the optimization process until an optimum shape—that delivers the maximum base heat—is found. Fin material (volume fra
fin allocated volume (frontal area) are constrained. In this paper the tree-shaped fin is kept uniform as in uniform thicknesses of the
the branches, and an equal length and equal thicknesses of all branches. The thermal performance of the optimized tree-shaped
to be much better than the performance of the longitudinal fin and the optimized T-shaped fins, and it has a compact size.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Fins have long been recognized as effective means to
ment heat transfer. The literature on this subject is sizea
In recent paper [1], Bejan and Almogbel have contribu
to this effort by the utilization of constructal optimizatio
method. The new aspect that is contributed by the cons
tal method is the complete geometric optimization of the
when the total inhabited volume is fixed. In order to illustr
this aspect in the most transparent terms, the authors
applied the constructal optimization method to some of
simplest assembly types that have been recognized in
tice. Three assembly configurations have been optimi
The simplest was the T-shaped fin, for which was sho
that the constructal optimization can lead to substantia
crease in global conductance relative to longitudinal fin
to previously optimized (by different method) T-shaped
designs that fill the same volume and use the same am
of fin material (e.g., Table 1).
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Table 1
Numerical examples of optimized fins (φ1 = 0.086,a = 0.185)

Fin design q̃B Aspect ratio

Optimized longitudinal fin 0.031 2.95*

T-shaped fin optimized by Kraus [5] 0.040 0.4829
Constructal optimized T-shaped fin [1] 0.0516 0.141
Double-constrained tree-shaped fin 0.0712 1

* Using the same frontal area of other designs.

Another useful result that was revealed for the constru
optimized T-shaped fin was that certain architectural feat
are relatively “robust”, i.e., insensitive to changes in des
parameters. The feature of robustness was important fo
constructal T-shaped fin because the aspect ratio of its
timized shape was found to be geometrically impracti
especially for compact applications as in heat sinks of n
book computers and miniature electronic devices.

In order to enhance the thermal performance of the
timized T-shaped fin, and to overcome its geometrical
practicality, it must be allowed to evolve. In this paper,
T-shaped fin is allowed to grow new branches to allow m
of the fin-material to get to the surface area to transfer
directly to the reservoir. Starting from the T-shape, the n

fin adds more branches in each major step of the optimiza-
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Nomenclature

A frontal allocated area of the fin . . . . . . . . . . . . m2

Af fin material cross-sectional area . . . . . . . . . . . m2

h heat transfer coefficient . . . . . . . . . W·m−2·K−1

imax maximum number of branch pairs
k thermal conductivity . . . . . . . . . . . . . W·m−1K−1

Li length of stem portioni . . . . . . . . . . . . . . . . . . . m
Lbi length of branchi . . . . . . . . . . . . . . . . . . . . . . . . m
qB overall heat conductance . . . . . . . . . . . . . . . . . . W
qbi branchi base heat transfer rate . . . . . . . . . . . . W
ti thickness of stem portioni . . . . . . . . . . . . . . . . m
tbi thickness of branchi . . . . . . . . . . . . . . . . . . . . . m
Ti temperature at junctioni . . . . . . . . . . . . . . . . . . K
Tx temperature at stem lengthx . . . . . . . . . . . . . . . K

Greek symbols

φ volume fraction of fin material
θ dimensionless temperature

Subscripts

opt optimum
i stem or branch pair number
b branch
m maximized once
mm maximized twice

Superscript

∼ dimensionless notation
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tion process until an optimum shape, that delivers the m
imum base heat- is found. Fin material (volume fractio
and fin allocated volume (frontal area) are constrained. S
lengths ratios, branches lengths ratios, stem thicknesse
tios, and branches thicknesses ratios are all fixed. The
plifications of the constructal T-shaped fin [1] are adop
here too; a unidirectional conduction model is assumed
a uniform heat transfer coefficient for the flow over the
surface.

2. Unidirectional conduction model

Consider the tree-shaped assembly of fins sketche
Fig. 1, multiple “elemental” fins (branches) of thickness
tbi and lengthsLbi (bi denotes branch pair numberi) serve
as tributaries to a stem portions of thicknessesti and lengths
Li (i denotes the stem portion that branch pair number bi is
connected to, at top). By having only one level of bran
ing the shape in Fig. 1 represents a first construct of
tree-shaped fin. The thicknesses and lengths of all bran
are made equal, so are the thicknesses and lengths
stem portions. The configuration is two-dimensional, w
the third dimension (W ) sufficiently long in comparison with
Limax andLbimax. The heat transfer coefficient (h) is uniform
overall the exposed surfaces. Specified are the tempera
of the root(TB) and the fluid(T∞). The temperatures at th
junctions(Ti) are unknowns, and vary with the geometry
the assembly.

The objective of the following analysis is to determi
the optimal geometry that is characterized by the maxim
global thermal conductanceqB/(TB − T∞), where qB is
the heat current through the base of the stem. The opt
geometry is represented by the overall aspect ratio of
tree-shaped fin(Limax/2Lbimax) or slenderness, the individ
ual branches-to-stem aspect ratio(tbi/ti), and the numbe

of branch pairs(imax). The optimization is subjected to two
-

s
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l

Fig. 1. A tree-shaped fin.

constraints, namely, the total volume (i.e., frontal alloca
area) constraint,

A = 2LimaxLbimax (constant) (1)

and the fin-material volume constraint,

Af =
imax∑

1

(2Lbi tbi + tiLi ) (constant) (2)

The latter can be expressed as the fin volume fractionφ =

Af/A, which is a constant considerably smaller than 1.
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The analysis that delivers the global conductance a
function of the assembly geometry consists of accoun
for conduction along the stem and the branches, and in
ing the continuity of temperature and heat currents at
junctions. The assumptions of a unidirectional conduc
model [2] are used for the stem and the branches. The v
ity of this model is tested later in Eqs. (13), (14).

The solution for a fin with non-negligible heat trans
through the tip [2] is applied for the branches,

qbi

kW(Ti − T∞)

= at̃
1/2
bi

2 Sinh(aL̃bi t̃
−1/2
bi ) + at̃

1/2
bi Cosh(aL̃bi t̃

−1/2
bi )

2 Cosh(aL̃bi t̃
−1/2
bi ) + at̃

1/2
bi Sinh(aL̃bi t̃

−1/2
bi )

(3)

where

(
L̃bi , t̃bi

) = (Lbi , tbi )

A1/2
, a =

(
2hA1/2

k

)1/2

(4, 5)

Eq. (3) shows the emergence of the dimensionless par
ters(a, L̃bi , t̃bi ) which influence the dimensionless branch
conductancẽqbi = qbi/[kW(Ti −T∞)]. Note the use ofA1/2

as length scale in the nondimensionalization of the linea
mensions.

The temperature distribution along the stem portioni, Tx ,
from the root of the stem (x = Li−1) to the junction at the
top (x = Li ), is

Tx − T∞ = C1 · Sinh(mix) + C2 · Cosh(mix) (6)

where

C1= (Ti−1 − T∞)

Sinh(miLi−1)

[
Sinh(miLi−1)Cosh(miLi)

− θi,i−1 Sinh(miLi−1)Cosh(miLi−1)

− 2 Sinh(miLi)Cosh(miLi−1)
]

× [
Sinh(miLi−1)Cosh(miLi)

− Sinh(miLi)Cosh(miLi−1)
]−1

C2= (Ti−1 − T∞)
[
θi,i−1 Sinh(miLi−1) − Sinh(miLi)

]
× [

Sinh(miLi−1)Cosh(miLi)

− Sinh(miLi)Cosh(miLi−1)
]−1

The fin parametermi = (2h/kti)
1/2 can be expressed a

miLi = aL̃i t̃
−1/2
i . Next,Tx is substituted in the equation fo

the continuity of heat current at the junctions,qi = qi+1 +
2qbi

−ktiW

(
∂T

∂x

)
x=Li

= −kti+1W

(
∂T

∂x

)
x=Li

+ 2qbi (7)

which can be arranged in a dimensionless form, and so
to establish the dimensionless junction temperature,θi,i−1 =
(Ti − T∞)/(Ti−1 − T∞), as a function of the dimensionle
parameters of the fin assembly (a, L̃i , t̃i , L̃i−1, L̃i+1, t̃i+1,
L̃bi , t̃bi , θi+1,i ),

η

θi,i−1 =

α + β − γ + ζ
(8)
-

where

η = [
Sinh

(
aL̃i t̃

−1/2
i

)2 − Cosh
(
aL̃i t̃

−1/2
i

)2]
× [

Sinh
(
aL̃i−1t̃

−1/2
i

)
Cosh

(
aL̃i t̃

−1/2
i

)
− Sinh

(
aL̃i t̃

−1/2
i

)
Cosh

(
aL̃i−1t̃

−1/2
i

)]−1

α = [
Sinh

(
aL̃i t̃

−1/2
i

)
Sinh

(
aL̃i−1t̃

−1/2
i

)
− Cosh

(
aL̃i t̃

−1/2
i

)
Cosh

(
aL̃i−1t̃

−1/2
i

)]
× [

Sinh
(
aL̃i−1t̃

−1/2
i

)
Cosh

(
aL̃i t̃

−1/2
i

)
− Sinh

(
aL̃i t̃

−1/2
i

)
Cosh

(
aL̃i−1t̃

−1/2
i

)]−1

β =
(

ti+1

ti

)1/2[
Sinh

(
aL̃i+1t̃

−1/2
i+1

)
Sinh

(
aL̃i t̃

−1/2
i+1

)
− Cosh

(
aL̃i+1t̃

−1/2
i+1

)
Cosh

(
aL̃i t̃

−1/2
i+1

)]
× [

Sinh
(
aL̃i t̃

−1/2
i+1

)
Cosh

(
aL̃i+1t̃

−1/2
i+1

)
− Sinh

(
aL̃i+1t̃

−1/2
i+1

)
Cosh

(
aL̃i t̃

−1/2
i+1

)]−1

γ =
(

ti+1

ti

)1/2

θi+1,i

[
Sinh

(
aL̃i t̃

−1/2
i+1

)2 − Cosh
(
aL̃i t̃

−1/2
i+1

)2]
× [

Sinh
(
aL̃i t̃

−1/2
i+1

)
Cosh

(
aL̃i+1t̃

−1/2
i+1

)
− Sinh

(
aL̃i+1t̃

−1/2
i+1

)
Cosh

(
aL̃i t̃

−1/2
i+1

)]−1

ζ = 2

(
tbi

ti

)1/2 2 Sinh(aL̃bi t̃
−1/2
bi ) + at̃

1/2
bi Cosh(aL̃bi t̃

−1/2
bi )

2 Cosh(aL̃bi t̃
−1/2
bi ) + at̃

1/2
bi Sinh(aL̃bi t̃

−1/2
bi )

Similar analysis of the top most junction(x = Limax) of
the tree-shaped fin reveals its dimensionless junction tem
ature,θimax,imax−1, which is a function of only five paramete
(a, L̃imax, t̃imax, L̃imax−1, L̃bimax, t̃bimax),

θimax,imax−1 = ϕ

λ + ψ
(9)

where

ϕ = [
Sinh

(
aL̃imaxt̃

−1/2
imax

)2 − Cosh
(
aL̃imaxt̃

−1/2
imax

)2]
× [

Sinh
(
aL̃imax−1t̃

−1/2
imax

)
Cosh

(
aL̃imaxt̃

−1/2
imax

)
− Sinh

(
aL̃imaxt̃

−1/2
imax

)
Cosh

(
aL̃imax−1t̃

−1/2
imax

)]−1

λ = [
Sinh

(
aL̃imaxt̃

−1/2
imax

)
Sinh

(
aL̃imax−1t̃

−1/2
imax

)
− Cosh

(
aL̃imaxt̃

−1/2
imax

)
Cosh

(
aL̃imax−1t̃

−1/2
imax

)]
× [

Sinh
(
aL̃imax−1t̃

−1/2
imax

)
Cosh

(
aL̃imaxt̃

−1/2
imax

)
− Sinh

(
aL̃imaxt̃

−1/2
imax

)
Cosh

(
aL̃imax−1t̃

−1/2
imax

)]−1

ψ = 2

(
tbimax

timax

)1/2

× 2 Sinh(aL̃bimaxt̃
−1/2
bimax

) + at̃
1/2
bimax

Cosh(aL̃bimaxt̃
−1/2
bimax

)

2 Cosh(aL̃bimaxt̃
−1/2
bimax

) + at̃
1/2
bi Sinh(aL̃bimaxt̃

−1/2
bimax

)

Finally, the global thermal conductance is obtained by

plying the continuity equation for the heat current through
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the root,qB = qi=1 (x = 0). The result can be expressed
a dimensionless global conductance of the tree-shaped

q̃B = qB

kW(TB − T∞)
= at̃

1/2
1

cosh(aL̃1t̃
−1/2
1 ) − θ1,B

sinh(aL̃1t̃
−1/2
1 )

(10)

for which θ1,B = (T1 − T∞)/(TB − T∞). Following the con-
catenation of Eqs. (9), (8), then (10), provides the glo
conductance of the tree-shaped finq̃B as a function ofa,
L̃i , t̃i , L̃bi and t̃bi : only three of these groups of paramet
are free to vary, because of the volume and fin material c
straints (Eqs. (1) and (2)), which now read

2L̃imaxL̃bimax = 1 (11)

φ =
imax∑

1

(
2L̃bi

t̃bi + t̃i L̃i

)
(12)

In the optimization code, the number of branches lev
(number of pairs of branches,imax), the slenderness (ove
all aspect ratio) of the tree-shaped fin, and the branche
stem thickness ratio are used as degrees of freedom. Dis
values are assigned for other parameters, where the geo
ric parameters were fixed as equal branches lengths, e
branches thicknesses, and equal stem portions thickne
The fin parameter (a) is fixed at the value 0.185, and the
volume fraction,φ, is fixed at 0.086.

Note that when the optimum ratio(tbi/ti)opt is known, the
individual thicknesses(t̃bi,opt, t̃i,opt) can be calculated ea
ily from the material constraint (Eq. (12)). Similarly, whe
the optimum overall aspect ratio of the fin(Limax/2Lbi )opt is
known, the individual lengths(L̃i,opt, L̃bi,opt) follow imme-
diately from the volume constraint (Eq. (11)).

3. Optimal tree-shaped geometry

Results for the optimal geometry of the tree-sha
fin can be generated by using the procedure sequenc
Figs. 2–5. The adopted procedure is a full optimization p
cedure that scans all—and more than—practical geome
of the fin. The optimization sequence was to fix all variab
then to search for the optimum value of branches-to-s
thickness ratio. Finding an optimum branches-to-stem th
ness ratio for various values of the overall aspect ratio of
fin is the second step in the sequence and leads to an
mum slenderness. Varying the number of pairs of branc
imax, while repeating the previous two steps for every va
of imax comprises the final step of the optimization seque
in the effort to find an optimum number of branches of
tree-shaped fin.

Fig. 2 shows that̃qB can be maximized with respect
branch-to-stem thickness ratiotbi/ti , i.e., with respect to the
internal shape of the fin assembly. The peak value of
curve is the maximized overall heat conductance,q̃B,m, that
corresponds to the optimum branch-to-stem thickness r

(tbi/ti)opt, in a tree-shaped fin that has an overall aspect
-
e
t-
l
s.

f

-

Fig. 2. Optimizing the branches-to-stem thickness ratio for a fixedimax and
aspect ratio.

Fig. 3. Optimizing the branches-to-stem thickness ratio for different va
of the aspect ratio and a fixedimax.

ratio of 0.25 and six branches. In Fig. 3, the aspect r
of the fin assembly is varied and an optimum branch
stem thickness ratio with a corresponding maximized ove
heat conductance is found for each discrete value of the
pect ratio. Here, the maximized overall conductanceq̃B,m
is maximized again with respect to the slenderness of
tree-shaped fin,(Limax/2Lbi ). The effort of Fig. 3 is summa
rized in Fig. 4 as one curve that connectsq̃B,m values that
corresponds to different aspect ratios. The peak of Fig.
the twice-maximized overall heat conductance of the t
shaped fin. The end-result of this double maximization
the twice-maximized overall heat conductanceq̃1,mm shown
in Fig. 5, where the double maximization procedure was
peated for a wide range of the number of pairs of branc
of the tree-shaped fin,imax.

In this extensive numerical optimization work it is ne
essary to keep in mind the range of validity of the unidir
tional conduction model on which the analysis is based.
model is valid when the following Biot number criterion
satisfied [3]:(

ht

k

)1/2

� 1 (13)

According to this criterion, the dimensionless thicknes

(t̃i , t̃bi ) must be small enough so that
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Fig. 4. The once maximized overall conductance is maximized again
respect to the overall aspect ratio.

Fig. 5. The improvement of the twice-optimized overall heat conducta
with increasing number of pairs of branches,imax.

a

(
t̃i

2

)1/2

< ε and a

(
t̃bi

2

)1/2

< ε (14)

whereε is a number smaller than 1. The numerical res
described in this study satisfy the condition (14) withε =
0.1, where Biot numbers for all stem portion and all branc
were in the range of 0.005–0.037.

Fig. 5 shows that the overall conductance of the tr
shaped fin increases as the number of pairs of branc
imax, increases. This means that the performance of the
shaped fin is ever increasing with more complexity; the
gineering practicality is the limit. Having no overall optim
tree-shaped geometry is conceivable; because more bra
means more fin material is getting to the surface of the
and transferring heat directly to the reservoir. Note that
individual configurations of Fig. 5 are all optimized both i
ternally and externally for every value ofimax. Hence, the
geometry of the stem and the branches are mutually
hanced so that only heat-delivery material is optimally
on the surface to increase the overall heat transfer f
the fin. This is an important result especially for the co
structal optimization method, because it means that—du
optimization—constructal optimization method enables
designer to avoid heat delivery choking in extended s
face arrays. Heat delivery choking is the phenomenon
Kraus et al. [4] has faced during optimization of extend

surface arrays where the stem at some chosen dimension
,
-

s

cannot transfer less heat than the branches can dissipa
constructal optimization method of fin arrays this limitati
does not exist because the whole geometry of the fin as
bly is optimized together. Another important characteris
of the tree-shaped fin revealed in Fig. 5 is that the slope o
tangent ofimax − qB,mm curve decreases asimax increases
i.e., the curve tends to get horizontal as more branche
developed for the fin. This result is particularly importa
because it means that the tree-shaped fin is going to re
point of diminishing returns, i.e., a point where more en
neering complexity is not justified by the little gain in over
heat conductance.

4. Constrained tree-shaped geometry

An important problem in fin assemblies design is
maximization of global thermal conductance in situatio
where the shape or the given volume is fixed. For ex
ple, available space is a major constraint during desig
notebook computers or miniature electronic devices. Ma
facturing limits pose other constraints. For the tree-sha
fin, it is now obvious that for every specified number
branches there is an optimum geometry of the fin that wo
deliver the maximum base heat. But what if the aspect r
of the fin (space constraint) or the branches-to-stem th
ness ratio (manufacturing constraint) is to be specified?

To answer such questions, first the tree-shaped fin
constrained to a specific branches-to-stem thickness
(tbi/ti = 0.25), then the optimization of the tree-shap
fin was carried out in a similar manner as in the pre
ous section. Fig. 6 is the result of this optimization.
terestingly it shows that if the branches-to-stem thickn
ratio is constrained an optimum number of branch p
would be found. The optimum number of branch pairs wh
tbi/ti = 0.25 is 6 (i.e., 12 branches) with a correspon
ing twice-maximized conductance of 0.0802. For an unc
strained tree-shaped fin with 6 pairs of branches the m
imized global conductance is 0.116 (44% better than
constrained fin) but with a branches-to thickness ratio as
as 0.045. The tree-shaped fin was then constrained to
cific aspect ratios (Fig. 7). No optimum number of bran
pairs was found this case.

A third possibility is to apply two constrains to the tre
shaped fin and search for an optimum configuration. Fig
and 3 already show the behavior of a tree-shaped fin
strained to both specific number of branches and spe
slenderness. For every constrained configuration as s
there is an optimum geometry that delivers a maximized
rate. Similarly, Fig. 6 is the result of a first stage of op
mization that had constrained geometries relative to both
number of branch pairs and the stem-to-thickness ratio.
though it is not shown, for every constrained configurat
in that stage there was an optimum geometry—with an o
mum slenderness—that delivers a maximum heat rate;

serwise no optimum would show up in Fig. 6. The new dou-
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Fig. 6. The optimization of a constrained tree-shaped fin,tbi /ti = 0.25.

Fig. 7. The optimization of a constrained tree-shaped fin, aspect ratio= 0.2,
0.5, and 1.

ble constrained situation to explore is to constrain the t
shaped fin to both specific slenderness and specific s
to-thickness ratio; would there be an optimum configura
with an optimum number of branch pairs that delivers a m
imum heat for this situation? Fig. 8 answers this question
showing an optimum configuration withimax,opt = 12.

It is now proven that more freedom to the tree-shaped
is a synonym to better performance, but not to practica
preferred shape. This finding is common in other works
the area of constructal design (example, Ref. [9]). The g
news in all of this is that in all cases; free, constrained
double constrained, the tree-shaped has shown a subst
increase in performance than optimized longitudinal fin
optimized T-shaped fins. This means that even if one wo
sacrifice a little performance to have a preferred-shape
strained tree-shaped fin, it still would be better perform
than other fin designs. To show this, a numerical exam
of the optimized tree-shaped fin constrained to a spe
slenderness (aspect ratio= 1) and to a specific branches-t
stem thickness ratio (tbi/ti = 0.25) is presented in Table 1
This example corresponds to a case optimized in an
lier study by Kraus [5], who usedk = 200 W·m−1·K−1,
h = 60 W·m−2·K−1 and fin lengths and thicknesses that
quired a total frontal areaA = 32.4 cm2 and solid volume
fractionφ1 = 0.086. In this casea = 0.185, cf. Eq. (5). The
four designs of Table 1 satisfy the assumed unidirectio

conduction model.
-

al

Fig. 8. The optimization of a double-constrained tree-shaped fin, as
ratio= 1, andtbi /ti = 0.25.

Table 1 shows that the chosen tree-shaped fin surpa
its closest competitor by about 40% improvement in p
formance. Keep in mind that this chosen tree-shaped
is double constrained. In fact, it was chosen this way
given an aspect ratio= 1, and a specific stem-to-thickne
ratio, tbi/ti = 0.25, only to keep it far from the optimum
free tree-shaped fin for the comparison to be unbiased
example, an unconstrained tree-shaped fin with 12 p
of branches (as in the double-constrained tree-shape
of Table 1) has an overall thermal conductance of 0
i.e., has about 200% improvement over the constructal
timized T-shaped fin. Although better performer, this f
tree-shaped fin has an optimum aspect ratio of 0.129
slim) and an optimum branch-to-stem thickness ratio
0.02 (very thin), which makes the chosen double-constra
tree-shaped fin a better choice with a lower performan
The summarized result of these comparisons is that
shaped fins show a promising fin design with a substa
increase in performance and a very good range of de
freedom (robustness) to accommodate a various heat t
fer needs.

5. Conclusions

The analysis and optimization work presented in t
paper showed that the global thermal conductance of
shaped fin could be maximized by geometric optimizat
subject to total volume and fin material constraints. The o
mization and the constraints deliver every geometric fea
of the fin. Noteworthy is the emergence of an optimal
ternal shape characteristic (e.g., the branches-to-stem t
ness ratio, Fig. 2) and an optimal external shape for
assembly (e.g., the overall aspect ratio, Fig. 4). The pe
mance of the twice-optimized tree-shaped fin increase
the number of pairs of branches increases. The cons
tal optimization of tree-shaped fin leads to substantial
creases in global conductance relative to current opt
designs that fill the same volume and use the same am
of fin material (e.g., Table 1). Although, the improveme

in performance of the tree-shaped fin with respect to con-
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tinuing branching reaches a point of dimensioning retu
where more geometric complexity is not justified by the c
responding little gain of performance. An important ch
acteristic of the constructal optimization method was
vealed in this paper, that is: the constructal optimizat
method avoids heat delivery choking in extended surface
rays [4].

The ever-increasing performance of the tree-shaped
with continuing branching is also related to the ideali
tions that have been adopted. An important idealiza
is the assumption that the heat transfer coefficient is
dependent of the free flow area shape (unidirectiona
model). Future studies may address the effect of rela
this assumption on tree-shaped architecture. An exam
of how one may proceed is given in Refs. [6,7], and
the summarizing book of the area of constructal des
“Shape and Structure from Engineering to Nature ” [
where the heat transfer coefficient was linked to (i.e.,
rived from) the optimal spacing between adjacent para
plates.
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